Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

PISTON-RINGS

1920-01-01
200075
The free, resilient, self-expanding, one-piece piston-ring is a product of strictly modern times. It belongs to the internal-combustion engine principally, although it is applicable to steam engines, air-compressors and pumps. Its present high state of perfection has been made possible only by the first-class material now available and the use of machine tools of precision. The author outlines the history of the gradual evolution of the modern piston-ring from the former piston-packing, giving illustrations, shows and comments upon the early types of steam pistons and then discusses piston-ring design. Piston-ring friction, the difficulties of producing rings that fit the cylinder perfectly and the shape of rings necessary to obtain approximately uniform radial pressure against the cylinder wall are considered at some length and illustrated by diagrams.
Technical Paper

TRACTOR WEIGHT AND DRAWBAR PULL

1920-01-01
200080
The best weight for a tractor of given horsepower must be a compromise based upon a mean of the many conditions to be encountered by a given machine or by different machines of the same model. While the weight logically will bear some relation to the drawbar pull, the latter in turn depends upon tractor speed. The next item is weight distribution, which requires the utmost skill of the designer; this is elaborated and diagrams are shown of tractors operating in comparatively firm and in soft ground, ascending a grade and when the drive-wheels are mired. The four-wheel-drive tractor requires a modification of the foregoing analysis and the diagrams are applied to afford a similar analysis for this type. The author's conclusion is that, while careful engineering will make the light-weight tractor of conventional type stable under most conditions, there is a possibility that any future trend toward lighter machines will open the field to other types.
Technical Paper

DIRECT MULTIPLE-SPEED AUTOMOBILE REAR-AXLE DRIVES

1920-01-01
200041
The first car credited by the author as being equipped with two or more direct drives is the Sizaire-Naudin, in 1905. The transmissions of this car and of one embodying similar principles of gearing, brought out in 1909, are described and illustrated by diagrams. After the Sizaire-Naudin, the next double direct-drive transmission was the Pleukharp transmission axle, made in 1906, although the real ancestor of the present double-drive rear axles is the 1906 Pilain transmission; both are described and illustrated. Other early American and foreign forms are commented upon and diagrammed, including the Austin design, believed by the author to be the first to use a two-speed axle of the simplest and lightest possible type to provide two direct drives in connection with a separate gearset to give additional forward speeds and the reverse. Modern two-speed axles are reviewed, with critical comment and diagrams, and considerable discussion of gear ratios is included.
Technical Paper

CURRENT DEVELOPMENT OF AUTOMOTIVE INDUSTRIES

1920-01-01
200035
The paper surveys the economic and engineering aspects of the automotive industry, so that engineers can align themselves with its future development. Better performance and longer life due to improved design and materials distinguish the 1920 car from its predecessors. One of the healthiest signs in the industry is the uniform determination of practically every manufacturer to improve the quality of his product. The designer has been forced to extend himself in getting the highest possible output from the smallest possible units. This trend is very noticeable. Conditions relating to prices, the return to peace-time production, the potential demand for cars and the present supply, and the probable improvements in cars are then reviewed, the thought then passing to a somewhat detailed discussion of detachable-head engines.
Technical Paper

FLEXIBILITY IN ORGANIZATION

1920-01-01
200036
The only direction in which flexibility of an organization can be considered is that of successful progress. Flexibility uncontrolled is liable to lead to retrogression instead of progression. During the war, every available unit of man-power was called into use, and all specialized intelligence was stretched almost to the breaking point. This was particularly true of the intelligence in the automotive industry. Demands were made in connection with the airplane, tanks, agricultural tractor and submarine chasers, as well as the more stabilized automobile and trucks. The most skilful men naturally gravitated to the most difficult work, in the problems surrounding the airplane and the tank, and, while in general there were not nearly enough men, the scarcity of skill was more noticeable in the older branches of the industry. It was there that the necessity for a flexible organization demonstrated itself. The first necessity was a rigid base from which progress could be made.
Technical Paper

DECREASING UNSPRUNG WEIGHT BY THE USE OF ALUMINUM

1920-01-01
200030
Stating the desirability of reducing unsprung weight in motor vehicles as a recognized fact and that 75 of 100 engineers interviewed favor such reduction, the particular advantages resulting are given as improved riding qualities, economy in tire wear and better acceleration. Mathematical deductions to establish the most desirable ratio of sprung to unsprung weight are not attempted, the intention being rather to state the reasons favoring lighter wheels and axles. Unsprung weight effects depend primarily upon the ratio of sprung to unsprung weight. No data determining the most desirable ratio are available, but an investigation of the proportional weight of the unsprung and sprung parts of good-riding-quality automobiles showed it to be about 1 to 3. By constructing the wheels and the axles of light metal it is possible to maintain such a ratio, assure good riding qualities and reduce the total weight.
Technical Paper

CARBURETION AND DISTRIBUTION OF LOW-GRADE FUELS

1920-01-01
200052
Continued lowering in the grade of fuel obtainable compels automotive engineers to produce engines that will utilize it with maximum economy. The manufacture of Pacific coast engine-distillate with an initial-distillation point of about 240 and an end-point of 480 deg. fahr. was abandoned by the principal oil companies early in 1920. Utilizing this fuel efficiently through its period of declining values forced advance solution of some fuel problems prior to a general lowering of grade of all automotive fuels.
Technical Paper

MOTOR-BUS TRANSPORTATION

1920-01-01
200053
Since the Fifth Avenue Coach Co. of New York is the largest successful company operating motor-buses in this country, the author gives a rather comprehensive description of this company's systems and methods, stating the three main divisions as being the engineering, mechanical and transportation departments, and presenting an organization chart. Departments concerned with finance, auditing, purchasing, publicity, claims and the like, which follow conventional lines, are not considered. The engineering, research, mechanical, repair and operating departments are then described in considerable detail. Six specific duties and responsibilities of the research department are stated and six divisions of the general procedure in carrying out overhauls for the operating department are enumerated. Regarding fuel economy, high gasoline averages from the company's standpoint mean economy, well-designed and maintained equipment, and skilled and contented operatives.
Technical Paper

USE OF HEAVY FUEL IN AUTOMOTIVE ENGINES

1920-01-01
200049
Emphasizing the necessity of persuading fuel manufacturers to improve the suitability of internal-combustion engine fuel by the mixture of other materials with petroleum distillates, and realizing that efficiency is also dependent upon improved engine design, the author then states that results easily obtainable in the simplest forms of automotive engine when using fuel volatile at fairly low temperatures, must be considered in working out a future automotive fuel policy. The alternatives to this as they appear in the light of present knowledge are then stated, including design considerations. The principles that should be followed to obtain as good results as possible with heavy fuel in the conventional type of engine are then described. These include considerations of valve-timing and fuel distribution. Valve-timing should assist correct distribution, especially at the lower engine speeds.
Technical Paper

AIRCRAFT RADIATORS

1919-01-01
190028
THIS paper describes the various types of radiator installations in use. Tabulated data on several makes of radiation and on successful airplane radiator installations are given. A brief review of laboratory tests is made and the features to be considered in design and manufacture are discussed. The author concludes by cautioning engineers against attempting to base new designs entirely upon experimental data, without comparing the tentative design with existing successful installations.
Technical Paper

A MODIFIED DESIGN OF CLASS B TRUCK ENGINE

1919-01-01
190031
THE design of a modification of the Class B Government standardized truck engine is presented, the principal object being a saving in weight without sacrificing either durability or safety factors. The crankcase design is rigid, but the metal is distributed so that the weight will be a minimum. The crankshafts are made of chrome-nickel steel of an elastic limit of 120,000 lb. per sq. in., which further carries out the idea of durability with low weight. The connecting-rod length is slightly more than twice that of the stroke, and this, with light-weight pistons, obviates vibration, without adding weight to the engine on account of increased cylinder height. The flywheel and bell-housing diameters were selected with a view to securing enough flywheel weight for smooth running without increasing the engine weight materially. All-steel supports reduce breakage of arms to a minimum. The manifolds are carefully designed to give economical performance, even with low-grade fuels.
Technical Paper

ENGINE PERFORMANCE

1919-01-01
190030
EVERY plow in use should have 10 b.-hp. available. Every tractor engine should deliver continuously at least 33 hp. If the 330-cu. in. engine mentioned were as good as a Liberty airplane engine, it could deliver 57 hp. at 1000 r.p.m. The horsepower actually obtained is as follows: 41.5 in the laboratory 33.0 at the factory 29.0 when burning gasoline 23.0 when burning kerosene 21.0 with poor piston-rings 19.0 with poor spark-plugs 9.5 available at the drawbar The great engineering problem of the future lies between the 57 and the 23 hp. From 19 to 9.5 hp. is the manufacturer's problem. The main difficulties, as outlined by the figures given, lie in the combustion chamber and its ability to dissipate the surplus heat, and in the limitations of fuel. There will be no need for refiners to continue to break up the heavier fuels by processes already so successful, if by ingenuity and good understanding of thermodynamics these can be made to burn in present-day engines.
Technical Paper

APPLICATION OF LIBERTY ENGINE MATERIALS TO THE AUTOMOTIVE INDUSTRY

1919-01-01
190054
The author discusses the different types of material used in the production of the Liberty engine, the physical properties of the finished parts and the heat-treatments used in making them, applying the information as set forth to the automobile, truck and tractor industries. Under their several heads the different engine pans are discussed with close attention to details. Chemical analyses are given for each part and approved heat-treating temperatures are indicated. Quenching, direct and indirect, water and oil cooling, hard spots, warpage, scaling and hair-line seams are treated. The advantages and disadvantages of the Izod impact test are stated briefly.
Technical Paper

STEEL TRUCK WHEELS

1919-01-01
190046
In the past the majority of trucks have been equipped with wood wheels. These gave good service, but the results demanded under strenuous modern conditions seem, the author states, to make the substitution of steel wheels on medium and heavy-duty trucks imperative. Truck engineers and builders seem to recognize the fact, but to hesitate to make the change, chiefly because a metal wheel is somewhat higher in first cost and because some designs have not as yet rendered the service expected of them. The service return of metal wheels is given from the records and reports of the London General Omnibus Co. and the Fifth Avenue Coach Co., both of which use steel wheels exclusively. The added mileage is in excess of wood-wheel service and exceptional tire mileage is shown. The author states briefly the arguments for the hollow-spoke, hollow-rim, the hollow full-flaring spoke and the integral-hub metal wheels.
Technical Paper

RUST PREVENTION

1919-01-01
190047
Iron rust is caused by electrolytic action between the various constituents of iron or steel in the presence of moisture and impurities. It is a continuous process; a coating of rust does not protect the metal underneath. The principal requirements of a rust-prevention process as applied to automobiles, aircraft and other machined and hardened parts are that it (1) Prevent rusting under normal use (2) Prevent the spreading of rust (3) Make no change in dimensions or fits (4) Make no alterations in physical properties (5) Be permanent for the life of the part (6) Be easy and quick of application (7) Be commercially practicable as to cost Of the most familiar rust-proofing processes, the cold, the hot and the high-temperature, the last is eliminated by requirements (3) and (4), while the cold processes and also japanning are eliminated by (2), (3) and (5). There remain three hot processes, the Parker, the Coslett and the Guerini.
Technical Paper

HEAVY-FUEL CARBURETER-TYPE ENGINES FOR VEHICLES

1919-01-01
190069
Manufacturers of carbureters and ignition devices are called upon to assist in overcoming troubles caused by the inclusion of too many heavy fractions in automobile fuels. So far as completely satisfactory running is concerned, the difficulty of the problem with straight petroleum distillates is caused by the heaviest fraction present in appreciable quantity. The problems are involved in the starting, carburetion, distribution and combustion. An engine is really started only when all its parts have the same temperatures as exist in normal running, and when it accelerates in a normal manner. Two available methods, (a) installing a two-fuel carbureter, using a very volatile fuel to start and warm-up the engine, and (b) heating the engine before cranking by a burner designed to use the heavier fuel, are described and discussed.
Technical Paper

THE DEMANDS OF A VICTORIOUS AUTOMOTIVE NATION

1919-01-01
190066
The nineteen months preceding Nov. 11, 1918, constituted the most far-reaching educational period in the history of the United States. The war being over, both opportunity and danger are ahead. Automotive manufacturers, engineers and educators have large responsibilities in post-war industrial rehabilitation. A frank discussion of several prime demands is presented. After outlining the achievements of the war period, the lessons thereof are enumerated, special emphasis being placed upon cooperation and teamwork, and the automotive manufacturers urged to give consideration to the permanent and stable establishment of their business and product. Attention is called to the part universities can and should take in practical service, in conducting automotive engineering courses, giving public instruction and furthering good roads development and highways transport.
Technical Paper

BURNING KEROSENE IN TRACTOR ENGINES

1917-01-01
170031
The author states as his object a review of what has been done and what must be done to make tractors successful in operating on low-grade fuels, especially kerosene. He takes up in order the four principal methods in common use of applying heat to vaporize kerosene, pointing out the advantages and disadvantages of each method and of its modifications. The author then cites various experiments with different types of carbureters in burning kerosene, drawing at length upon his own experience in this connection. He cites difficulties with gas distribution, manifold condensation, pistons and spark-plugs and points out that carbureter design is inseparable from considerations of tractor engine and manifold design. That better progress has not been made in the past in developing kerosene-burning tractor engines is stated to be largely owing to the fact that there has not been sufficient cooperation between engine and carbureter manufacturers.
X